

MATHEMATICS STANDARD LEVEL PAPER 1

Thursday 7 May 2009 (afternoon)

1	hour	30	min	LITES
- 1	HOUL	20	111111	utes

C	andi	date	sessi	on n	umb	er	
0							

INSTRUCTIONS TO CANDIDATES

- Write your session number in the boxes above.
- Do not open this examination paper until instructed to do so.
- You are not permitted access to any calculator for this paper.
- Section A: answer all of Section A in the spaces provided.
- Section B: answer all of Section B on the answer sheets provided. Write your session number
 on each answer sheet, and attach them to this examination paper and your cover
 sheet using the tag provided.

0

- At the end of the examination, indicate the number of sheets used in the appropriate box on your cover sheet.
- Unless otherwise stated in the question, all numerical answers must be given exactly or correct to three significant figures.

Full marks are not necessarily awarded for a correct answer with no working. Answers must be supported by working and/or explanations. Where an answer is incorrect, some marks may be given for a correct method, provided this is shown by written working. You are therefore advised to show all working.

SECTION A

Answer all the questions in the spaces provided. Working may be continued below the lines, if necessary.

1.	[Maximum]	mark:	71

Let
$$\mathbf{A} = \begin{pmatrix} 5 & 1 \\ 6 & 2 \end{pmatrix}$$
 and $\mathbf{B} = \begin{pmatrix} 2 & -1 \\ -6 & 5 \end{pmatrix}$.

- (a) (i) Find AB.
 - (ii) Write down the inverse of A.

[3 marks]

Let
$$X = \begin{pmatrix} x \\ y \end{pmatrix}$$
 and $C = \begin{pmatrix} 8 \\ -4 \end{pmatrix}$.

(b)	Solve the matrix equation $AX = C$.	[4 marks]

.....

.....

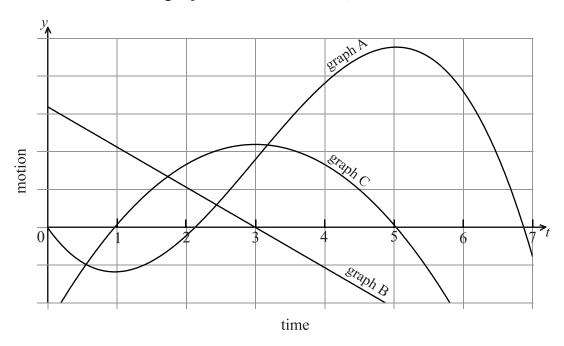
.....

The letters of the word PROBABILITY are written on 11 cards as shown below.

P	R	0	В	A	В	I	I	Т	Y
*	1 + -			4 1	ושו	*	*	*	

Two cards are drawn at random without replacement. Let *A* be the event the first card drawn is the letter A. Let *B* be the event the second card drawn is the letter B.

(a)	Find $P(A)$.	[1 mark
(b)	Find $P(B A)$.	[2 marks
(c)	Find $P(A \cap B)$.	[3 marks


5. INIUXIMUM MUIK. O	3.	[Maximum	mark:	6
-----------------------------	----	----------	-------	---

Let $f(x) = e^x \cos x$.	Find the gradient of the normal to the curve of f at $x = \pi$.	
		•
		•

4. [Maximum mark: 6]

The following diagram shows the graphs of the **displacement**, **velocity** and **acceleration** of a moving object as functions of time, t.

(a) Complete the following table by noting which graph A, B or C corresponds to each function.

[4 marks]

Function	Graph
displacement	
acceleration	

(b)	Write down the value of t when the velocity is greatest.	[2 marks]

5. [Maximum mark: 6]

Let $f(x) = x^2$ and $g(x) = 2(x-1)^2$.

(a) The graph of g can be obtained from the graph of f using two transformations. Give a full geometric description of each of the two transformations.

[2 marks]

(b) The graph of g is translated by the vector $\begin{pmatrix} 3 \\ -2 \end{pmatrix}$ to give the graph of h. The point (-1, 1) on the graph of f is translated to the point P on the graph of h. Find the coordinates of P.

[4 marks]

														-						-						-					-																						
	•	•	•	•	•	•	•	•	• •	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	• •	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	• •	•	٠	•	•	•		•	
																												•																								•	

......

6. [Maximum mark: 7]

Let $f(x) = e^{x+3}$.

(a) (i) Show that $f^{-1}(x) = \ln x - 3$.

(ii) Write down the domain of f^{-1} .

[3 marks]

(b) Solve the equation $f^{-1}(x) = \ln\left(\frac{1}{x}\right)$.

[4 marks]

.....

.....

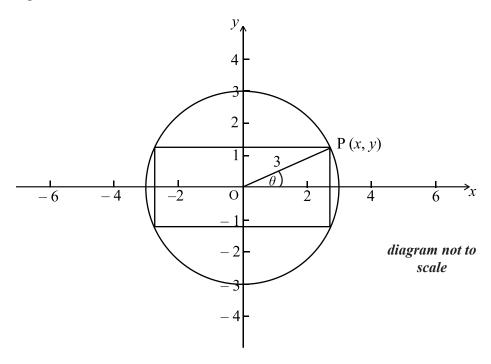
......

.....

.....

	7.	[Maximum	mark:	7
--	----	----------	-------	---

The graph of $y = \sqrt{x}$ between $x = 0$ and $x = a$ is rotated 360° about The volume of the solid formed is 32π . Find the value of a .	t the x-axis.


Do NOT write on this page.

SECTION B

Answer all the questions on the answer sheets provided. Please start each question on a new page.

8. [Maximum mark: 13]

A rectangle is inscribed in a circle of radius 3 cm and centre O, as shown below.

The point P(x, y) is a vertex of the rectangle and also lies on the circle. The angle between (OP) and the x-axis is θ radians, where $0 \le \theta \le \frac{\pi}{2}$.

- (a) Write down an expression in terms of θ for
 - (i) x;
 - (ii) y. [2 marks]

Let the area of the rectangle be A.

(b) Show that $A = 18 \sin 2\theta$.

[3 marks]

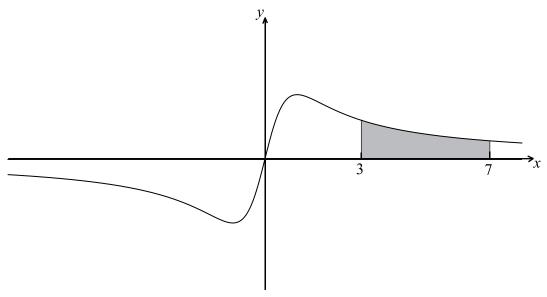
- (c) (i) Find $\frac{dA}{d\theta}$.
 - (ii) Hence, find the exact value of θ which maximizes the area of the rectangle.
 - (iii) Use the second derivative to justify that this value of θ does give a maximum.

[8 marks]

Do NOT write on this page.

9. [Maximum mark: 16]

The vertices of the triangle PQR are defined by the position vectors


$$\overrightarrow{OP} = \begin{pmatrix} 4 \\ -3 \\ 1 \end{pmatrix}, \overrightarrow{OQ} = \begin{pmatrix} 3 \\ -1 \\ 2 \end{pmatrix} \text{ and } \overrightarrow{OR} = \begin{pmatrix} 6 \\ -1 \\ 5 \end{pmatrix}.$$

- (a) Find
 - (i) \overrightarrow{PQ} ;
 - (ii) \overrightarrow{PR} . [3 marks]
- (b) Show that $\cos R\hat{P}Q = \frac{1}{2}$. [7 marks]
- (c) (i) Find sin RPQ.
 - (ii) Hence, find the area of triangle PQR, giving your answer in the form $a\sqrt{3}$. [6 marks]

Do NOT write on this page.

10. [Maximum mark: 16]

Let $f(x) = \frac{ax}{x^2 + 1}$, $-8 \le x \le 8$, $a \in \mathbb{R}$. The graph of f is shown below.

The region between x = 3 and x = 7 is shaded.

(a) Show that
$$f(-x) = -f(x)$$
.

[2 marks]

(b) Given that
$$f''(x) = \frac{2ax(x^2 - 3)}{(x^2 + 1)^3}$$
, find the coordinates of all points of inflexion. [7 marks]

(c) It is given that
$$\int f(x) dx = \frac{a}{2} \ln(x^2 + 1) + C$$
.

(i) Find the area of the shaded region, giving your answer in the form $p \ln q$.

(ii) Find the value of
$$\int_4^8 2f(x-1) dx$$
.

[7 marks]